

0

HPLC 法测定食品抗氧化剂可靠性研究

马逢伯 曹新杰 刘国琪 范保瑞*于海燕* 北京市平谷区市场监管局检验检测中心,北京101200 * 通讯作者

马逢伯, 女, 本科。研究方向: 食品药品质量评价与检验检测方法

范保瑞,男,主管药师。研究方向:食品药品质量评价与检验检测方法

于海燕, 女, 工程师。研究方向: 食品检验检测技术

摘要:研究旨在测定食品中9种抗氧化剂含量。研究采用高效液相色谱法,以反向C18柱为分离柱, 流动相 A: 水,流动相 B: 甲酸 - 甲醇 - 乙腈,梯度洗脱,流速 1.0mL/min;柱温: 40℃;进 样量: 5uL; 检测波长: 280nm。结果显示, 9种抗氧化剂在37分钟内完全分离, 线性范围0.5mg/ L~400mg/L (r=0.9997~1.0000), 定量限为 0.5mg/L~1.0mg/L, 回收率为 82.2%~97.9%, 相对标 准偏差(RSD)均不大于2%(n=9)。该方法灵敏、准确、专属性强、重复性好,可用于食品 中抗氧化剂的定量检测。。

关键词: 梯度洗脱; 高效液相色谱法; 抗氧化剂

食品抗氧化剂是指能阻止或延缓食品氧化变 质、提高食品稳定性和延长贮存期的食品添加剂。氧 化不仅会使食品中的油脂变质,还会使食品褪色、变 色和维生素被破坏等,降低食品的感官质量和营养 价值,甚至产生有害物质,引起食物中毒。为有效 防止食品变质, 生产厂家会在食品中添加人工合成 抗氧化剂。但人工合成的抗氧化剂使用过量会对 人体产生毒性。为了测定食品中抗氧化剂含量, 研究以食用油和烘焙类面包为试验材料,利用高效 液相色谱法测定这两种试验材料中9种抗氧化剂,进 行加标回收试验,以验证本方法的准确度和精密度。

1 材料与试验方法

1.1 仪器

LC20A型 HPLC 仪,包括 SPD-M20A可变波 长检测器 (PDA)、Labsolutions 色谱工作站(日本 岛津公司), CPA225D电子天平(德国sartorius公司)。

1.2 对照品与试剂

对照品:没食子酸丙酯 (PG,纯度 99.8%,下 同)、2, 4, 5-三羟基苯丁酮(THBP, 98.8%)、叔 丁基对苯二酚 (TBHQ, 98.5%)、去甲二氢愈 创木酸 (NDGA, 99.1%)、叔丁基对羟基茴香 醚 (BHA, 97.4%)、2, 6-二 叔 丁 基 -4-羟 甲基苯酚 (Ionox-100, 97.8%)、没食子酸辛 酯 (OG, 99.1%)、2,6-二叔丁基对甲基苯酚 (BHT, 100%)、没食子酸十二酯 (DG, 99.7%),均 产自曼哈格公司。

试剂:甲醇、乙腈、乙酸乙酯、甲酸均为色谱 纯,环己烷、正己烷、氯化钠、无水硫酸钠均为分 析纯, 水为纯化水。

1.3 色谱条件

色谱柱: C18(Agilent, 4.6×250mm, 5 μm); 流 速 1.0mL/min; 柱温: 40℃; 进样量: 5uL; 检测 波长: 280nm; 流动相 A: 水,流动相 B: 甲酸 -甲醇 - 乙腈(1:65:35, V/V), 梯度洗脱程序见表 1。

表1梯度洗脱程序 Tab1 Program of Gradient Elution

时间(分钟)	流动相 A(%)	流动相 B(%)
0.00	47	53
20.00	20	80
25.00	20	80
30.00	10	90
35.00	10	90
38.00	47	53
48.00	47	53

1.4 溶液的制备

1.4.1 标准溶液的配制

标准储备液:分别称取9种抗氧化剂对照品各 0.1g于100ml的容量瓶里,用乙腈溶解并稀释至刻 度,摇匀。

标准工作液:准确移取适量体积的标准储备液,用乙腈稀释制成浓度为0.5 mg/L、50 mg/L、100 mg/L、200 mg/L、400 mg/L的混合标准使用液。

1.4.2 样品提取

1.4.2.1 食用油脂

称取混合均匀的样品 1.00g(精确至 0.01g)于 50mL 离心管中,加入 5mL 乙腈饱和的正己烷溶液溶解样品,涡旋 1min,静置 10min,用 5mL 正己烷饱和的乙腈溶液涡旋提取 2min,3000r/min 离心 5min,收集乙腈层于试管中,再重复使用 5mL 正己烷饱和的乙腈溶液提取 2次,合并 3次提取液,待净化。同时做空白试验。

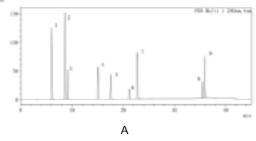
1.4.2.2 烘焙面包

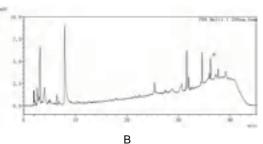
称取混合均匀的样品 1.00g(精确至 0.01g) 于50mL 离心管中,加入5mL 乙腈饱和的正己烷溶液,涡旋1min充分混匀,浸泡10min。加入5mL饱和氯化钠溶液,用5mL正己烷饱和的乙腈溶液涡旋2min,3000r/min离心5min,收集乙腈层于试管中,再重复使用5mL正己烷饱和的乙腈溶液提取2次,合并3次提取液,加0.1%甲酸溶液调节pH=4,待净化。同时做空白试验。

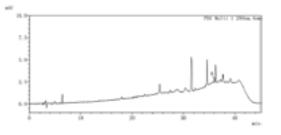
1.4.3 净化

在C18固相萃取柱中装入约2g的无水硫酸钠,用5mL甲醇活化萃取柱,再以5mL乙腈平衡萃取柱,弃去流出液。将所有提取液倾入柱中,弃去流出液,再以5mL乙腈和甲醇的混合溶液洗脱,收集所有洗脱液于试管中,40℃旋转蒸发至干,加2mL乙腈定容,过0.22μm有机系滤膜,供液相色谱测定。

2 结果与分析


2.1 流动相及梯度洗脱程序的选择


现行质量标准¹¹及相关文献中多采用甲醇-水或甲醇-酸溶液作为流动相体系[2-9]。由于以上9种抗氧化剂的极性和保留特性差异较大,笔者分别对甲醇-水体系、乙腈-水体系、乙酸-甲醇-乙腈-


水体系、甲酸-甲醇-乙腈-水体系等进行考察,结果表明甲酸-甲醇-乙腈-水体系分离度好、基线平稳、峰形对称。测定结果色谱图见图 1。

笔者采用同一台色谱仪,在保持柱温、流速、检测波长不变的条件下,不断调整梯度洗脱程序,使较难分离的组分 THBP 和 TBHQ、BHT 和 DG 达到良好的分离,分离度均在 1.5 以上。

另外,笔者考察了方法耐用性,分别单独微调流动相比例、柱温、流速,并在不同色谱仪上进行检测。结果表明,选定的色谱条件进行微调,所检测到的色谱峰数目、出峰顺序、分离效果和抗氧化剂峰面积均无明显变化。

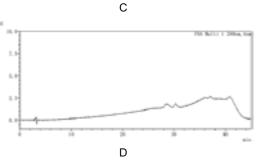


图 1 高效液相色谱图 High Performance Liquid Chromatogram

A. 对照品溶液色谱图; B. 面包溶液色谱图; C. 食用油溶液色谱图; D. 空白溶剂色谱图; 1. PG; 2.THBP; 3.TBHQ; 4.NDGA; 5.BHA; 6. Ionox-100; 7.OG; 8.BHT; 9.DG

Fig1 HPLC chromatograms

A.referencesolution; B.Chromatogram of bread solution; C.Chromatogram of edible oil solution; D. blank matrix;

1.PG;2.THBP;3.TBHQ;4.NDGA;5.BHA;6. Ionox-100;7.OG;8.BHT;9.DG

2.2 标准曲线及定量限

按照 1.3 的色谱条件,将 1.4.1 标准溶液进行高效液相色谱检测,并将标准工作液测定结果以标准品质量浓度为横坐标(X),标准品峰面积为纵坐标(Y),绘制标准曲线,进行线性回归。以信噪比 S/N=10:1 测得各成分定量限。结果见表 2。

表 2 回归方程和线性范围 Tab2 Regression Equation and Linear Rang

成分	回归方程	r	定量限 (mg/kg)
PG	y=11997.8x -54924.6	0.9997	0.5
THBP	y=14715.9x -41676.1	0.9998	1.0
ТВНО	y=4308.5x -2311.3	0.9999	0.5
NDGA	y=5378.75x -11423.8	0.9999	0.5
ВНА	y=4116.8x -2366	0.9999	0.5
Ionox-100	y=1589.54x -234.39	0.9999	1.0
OG	y=9301.05x -42417	0.9997	0.5
ВНТ	y=2506.24x -3249	1.0000	0.5
DG	y=7636.83x -33566.2	0.9998	0.5

结果表明, 9 种抗氧化剂在 0.5mg/L~400mg/L

质量浓度范围内呈良好的线性关系,可用于食品中抗氧化剂的准确定量,定量限在0.5mg/L~1.0mg/L。

2.3回收率试验和精密度考察

选取食用油和烘焙面包两种基质,精密加入适量标准储备液,按照 1.4 的方法进行前处理并定量稀释,配制回收率试验溶液,每个浓度配制 3 份,共9 份溶液,分别测定回收率,加标量及测定结果见表 3、表 4。

表 3 面包基质回收率试验结果 Tab3 The Results of Bread Matrix Recovery Tests

成分	加入量 (mg/L)	平均测得 量(mg/L)	平均回 收率 (%)	RSD (%)
	20	19.39	95.8	1.9
PG	50	46.08	91.0	1.0
	100	95.49	94.3	0.6
	20	18.68	92.3	1.8
THBP	50	48.10	95.0	1.3
	100	97.33	96.1	0.8
	20	17.49	86.4	1.5
TBHQ	50	48.11	95.0	1.1
	100	98.42	97.2	0.3
	20	17.63	87.1	1.7
NDGA	50	47.86	94.5	1.3
	100	97.02	95.8	0.6
	20	18.46	91.2	0.8
ВНА	50	48.28	95.4	1.1
	100	96.08	94.9	0.3
Ionox-100	20	17.68	87.3	1.2
	50	48.76	96.3	1.3
	100	95.57	94.4	0.7
	20	17.51	86.5	1.1
OG	50	47.66	94.1	1.1
	100	96.02	94.8	0.5
	20	18.48	91.3	1.1
ВНТ	50	48.43	95.7	1.0
	100	96.41	95.2	0.9

DG	20	19.32	95.4	1.9
	50	47.11	93.1	1.3
	100	94.99	93.8	1.1

表 4 食用油基质回收率试验结果
Tab3 The Results of Edible Oil Matrix Recovery Tests

成分	加入量 (mg/L)	平均测得 量(mg/L)	平均回 收率 (%)	RSD (%)
PG	20	17.42	86.8	1.5
	50	48.44	96.6	1.2
	100	96.66	96.4	0.5
	20	18.32	91.4	1.1
THBP	50	49.06	97.9	1.4
	100	94.64	94.4	0.5
	20	18.35	91.5	1.7
TBHQ	50	43.56	86.9	0.8
	100	96.12	95.9	0.5
	20	18.44	92.0	1.2
NDGA	50	44.76	89.3	0.9
	100	93.50	93.3	0.6
	20	17.41	86.8	1.6
ВНА	50	42.44	84.7	0.9
	100	92.83	92.6	1.0
	20	16.85	84.0	1.8
Ionox-100	50	42.64	85.1	1.1
	100	93.13	92.9	0.7
	20	18.43	91.9	1.2
OG	50	46.21	92.2	1.3
	100	94.80	94.6	1.1
	20	16.48	82.2	1.1
ВНТ	50	43.47	86.7	0.9
	100	92.40	92.2	0.9
	20	19.42	96.9	0.9
DG	50	48.41	96.6	0.7
	100	96.37	96.1	1.8

结果表明,不同基质中9种抗氧化剂的回收率为82.2%~97.9%,相对标准偏差(RSD)均不大于2%,表明本方法可靠。

综上所述,本方法灵敏、准确、专属性强、重复性好,可用于食品中9种常见人工合成抗氧化剂的检测。■

参考文献

[1] 国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中9种抗氧化剂的测定GB5009.32-2016[S].北京:中国标准出版社,2016.

[2] 胡玉霞 . 高效液相色谱法测定食品中的抗氧化剂 [J]. 浙江农业科学, 2019, 60(09):1631-1632.

[3] 晁桂梅 . 高效液相色谱法测定食用油中 9 种抗氧化剂 [J]. 分析仪器, 2020 (06):28-31.

[4] 李兴根, 乔勇升, 韩芷玲, 等. 高效液相色谱测定食品中的 7 种抗氧化剂 [J]. 分析测试学报, 2012, 31(10):1319-1324.

[5] 汪强,殷宪超,阮艺静,等.高效液相色谱法测定食用植物油中抗氧化剂的含量[J].理化检验(化学分册),2019,55(10):1215-1218.

[6] 左玉, 张国娟, 惠芳, 等. 食品抗氧化剂的研究进展 [J]. 粮食与油脂, 2018, 31(5):1-3.

[7] 蔡发,段小娟,牟志春,等.高效液相色谱法同时测定食品中的12种抗氧化剂[J].食品科学.2010,31(08):207-211.

[8] 胡小钟, 余建新, 孙国保, 等.高效液相色谱法同时测定油脂中的9种抗氧化剂[J].分析测试学报, 1999, 18(5):21-24.

[9] 俞晔,顾燕,曹文忠,等 . 高效液相色谱法同时测定 食用油中 9 种抗氧化剂 [J]. 食品科技 .2007, (11):181-183.

